1 ) The length of a metallic rod is 5 m at 0 C ( Celsius ) and become 5.01 m on heating up to heating up to 100 C . The linear expansion of metal will be : -
Solution : -
L = L˳ ( 1 + α ∆ t ) . . . . . . . . eq. 1
∴ L = final length and L˳ = initial length .
∴ α = coefficient of linear expansion .
So , eq. 1 : -
5.01 = 5 ( 1 + α ∆ t ) ,
5.01 = 5 + 5 α ∆ t ,
0.01 = 5 α ( 100 – 0 ) ,
α = ( 10 ^ ( - 2) ) / ( 5 x 10 ^ 2 )
So , α = 2 x 10 ^ ( - 5 ) / C , Answer .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 ) A metal rod of silver at 0 C ( Celsius ) is heated to 100 C , its length is increased to 0.19 cm . The coefficient of cubical expansion of the silver rod is : -
Solution : -
∆ L = L˳ α ∆ t ,
0.19 = L˳ α ∆ t ,
L˳ α = 0.19 / 100 = 1.9 x 10 ^ ( - 3 ) ,
Let , L˳ = 1 m .
So ,
α = 1.9 x 10 ^ ( - 3 ) , it is linear coefficient of expansion .
So ,
Volumetric ( cubical ) coefficient of expansion = 3 α = 5.7 x 10 ^ ( - 5 ) / C , Answer .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 Comments